UNIQUENESS OF TORSION FREE CONNECTION ON SOME INVARIANT STRUCTURES ON LIE GROUPS

BY

MICHEL NGUIFFO BOYOM AND GEORGES GIRAUD

ABSTRACT. Let \mathfrak{S} be a connected Lie group with Lie algebra \mathfrak{g} . Let $\mathrm{Int}(\mathfrak{g})$ be the group of inner automorphisms of \mathfrak{g} . The group \mathfrak{S} is naturally equipped with $\mathrm{Int}(\mathfrak{g})$ -reductions of the bundle of linear frames on \mathfrak{S} . We investigate for what kind of Lie group the 0-connection of E. Cartan is the unique torsion free connection adapted to any of those $\mathrm{Int}(\mathfrak{g})$ -reductions.

1. Definitions and main results. Let M be an n-dimensional manifold and let G be a Lie subgroup of the linear group $Gl(\mathbf{R}^n)$, with Lie algebra \mathfrak{G} . All manifolds we shall consider are smooth and connected. Let us consider a G-reduction E(M, G) of the frame bundle $E^0(M, Gl(\mathbf{R}^n))$ and two linear connections ∇_1 and ∇_2 adapted to E(M, G). Suppose these connections have the same torsion tensor, so that

$$(\nabla_1)_X Y - (\nabla_1)_Y X - [X, Y] = (\nabla_2)_X Y - (\nabla_2)_Y X - [X, Y]$$

or

$$(\nabla_1 - \nabla_2)_Y Y - (\nabla_1 - \nabla_2)_Y X = 0$$

for any vector fields X, Y on M. Then if one identifies the tangent space $T_x(M)$ for $x \in M$, with \mathbb{R}^n , the difference $\nabla_1 - \nabla_2$ appears as an element of the space $\mathbb{R}^{n^*} \otimes \mathfrak{G} \cap S^2 \mathbb{R}^{n^*} \otimes \mathbb{R}^n$ which is known to be the first prolongation of \mathfrak{G} (see [4]).

A G-structure E(M, G) is said to be 1-flat if it can be equipped with a torsion free linear connection. Thus any 1-flat G-structure can be equipped with at most one torsion free linear connection if and only if the first prolongation of \mathfrak{G} is zero.

We are concerned with the following problem. Let (M, ω) be a differentiable manifold equipped with a torsion free linear connection ω . We wish to describe those linear subgroups G such that the connection ω is the unique linear connection adapted to some G-reduction of the frame bundle of M. Obviously a necessary condition is that the first prolongation of the holonomy algebra of ω be zero. So if \mathcal{K}_{ω} is the holonomy algebra of ω , the problem of finding all linear Lie groups with the previous properties is equivalent to that of finding all Lie subalgebras \mathfrak{G} of $\operatorname{End}(\mathbf{R}^n)$ such that

$$(p_1)$$
 $\mathcal{K}_{\omega} \subset \mathcal{G},$

$$(p_2)$$
 $\mathfrak{G}^{(1)} = 0.$

Received by the editors October 19, 1981 and, in revised form, July 27, 1982 and January 3, 1983. 1980 *Mathematics Subject Classification*. Primary 53C10, 53C05; Secondary 22E60.

Key words and phrases. G-structure, torsion free connection, prolongation, symmetric operator of Lie algebra.

In what follows we deal with differentiable manifolds (\mathcal{G}, ω) which are Lie groups equipped with the 0-connection of Cartan. Our interest in this particular case is due to the fact that the 0-connection of Cartan describes the local structure of the Lie group \mathcal{G} . In particular, the 0-connection of Cartan is invariant by the left translations of \mathcal{G} , while if ∇ is the covariant derivative associated to the 0-connection then $\nabla_X Y = \frac{1}{2}[X, Y]$ for any two left invariant vector fields X and Y on \mathcal{G} .

As a direct consequence of the above facts one deduces that the holonomy algebra, \mathcal{K}_0 , of the 0-connection is included in the Lie algebra $\mathrm{ad}(\mathfrak{g})$ of inner derivations of \mathfrak{g} (\mathfrak{g} being the Lie algebra of \mathfrak{G}). Let $\mathrm{Int}(\mathfrak{g})$ be the connected Lie subgroup of $\mathrm{Gl}(\mathfrak{g})$ associated to $\mathrm{ad}(\mathfrak{g})$. Let us extend the holonomy fiber bundles of the 0-connection to $\mathrm{Int}(\mathfrak{g})$ -reductions of the frame bundle of \mathfrak{G} to get left invariant $\mathrm{Int}(\mathfrak{g})$ -structures. Any two such extensions are conjugate.

Our main results give a characterization of those Lie groups $\mathcal G$ on which the Int(g)-structures constructed as above belong to the set of Int(g)-reductions of the frame bundle of $\mathcal G$ which satisfy the properties (p_1) and (p_2) , so that $\mathcal K_0 \subset ad(\mathfrak g)$ and $(ad(\mathfrak g))^{(1)} = 0$. For such a Lie group $\mathcal G$, the 0-connection of Cartan is the unique torsion free linear connection adapted to its holonomy bundles. We make technical use of a Lie subalgebra $\mathfrak h_{\mathfrak g}$ of the linear Lie algebra End(g), which is defined as follows. A linear endomorphism $\mathfrak p$ of the vector space $\mathfrak g$ belongs to $\mathfrak h_{\mathfrak g}$ if it satisfies the identity

$$[\varphi(X), Y] + [X, \varphi(Y)] = 0$$

for any pair (X, Y) in $g \times g$. Such a φ is called a symmetric operator of g. In the present work we restrict ourselves to the case of nonsolvable Lie groups.

Now let us denote by r the radical of the Lie algebra \mathfrak{g} , i.e., r is the maximal solvable ideal in \mathfrak{g} . Taking a Levi subalgebra \mathfrak{F} of \mathfrak{g} , the vector space \mathfrak{g} becomes a direct sum: $\mathfrak{g} = r \oplus \mathfrak{F}$. Let us consider r with its \mathfrak{F} -module structure given by the extension $0 \to r \to \mathfrak{g} \to \mathfrak{F} \to 0$. The subspace of r consisting of \mathfrak{F} -invariant elements is denoted by $r^{\mathfrak{F}}$. As \mathfrak{F} is a semisimple Lie algebra, the subspace $[\mathfrak{F}, r]$ is a submodule of the \mathfrak{F} -module r, and one gets the direct sum of \mathfrak{F} -modules

$$r = r^{\mathfrak{s}} \oplus [r, \mathfrak{s}].$$

The maximal ideal of g contained in r^s is denoted $D_g^{\infty}(r^s)$ and the center of the subalgebra r^s is denoted $Z(r^s)$. The subspace of r^s denoted by $h_{r^s}(r^s)$ is that obtained by the evaluation map of $h_{r^s} \otimes r^s$ in r^s .

The main geometrical results to be proved are the following.

 (\mathfrak{R}_1) Let \mathfrak{G} be a Lie group and let \mathfrak{g} be its Lie algebra. Then the 0-connection ∇_0 of Cartan is the unique torsion free connection on each Int(\mathfrak{g})-extension of any holonomy bundle of ∇_0 if and only if the ideal $h_{\mathfrak{r}^*}(\mathfrak{r}^{\mathfrak{s}}) \cap D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ is included in the center of $\mathfrak{r}^{\mathfrak{s}}$.

 (\mathfrak{R}_2) Let \mathcal{G} be a Lie group and let \mathfrak{g} be its Lie algebra. Suppose that $\mathfrak{r}^{\mathfrak{s}}$ is a commutative subalgebra of \mathfrak{g} . Then one gets uniqueness of torsion free connection adapted to each $\operatorname{Int}(\mathfrak{g})$ -extension of any holonomy bundle of ∇_0 if and only if the Lie group \mathcal{G} has discrete center.

- (\mathfrak{R}_3) Take \mathfrak{G} to be a Lie group, the radical of which is nilpotent subgroup. If \mathfrak{G} has discrete center, then there is a unique torsion free connection on each $\operatorname{Int}(\mathfrak{g})$ -extension of the holonomy bundle of ∇_0 .
- (\mathfrak{R}_4) Given a Lie group \mathfrak{G} , let \mathfrak{R}^s be the connected Lie subgroup of \mathfrak{G} associated to the Lie subalgebra r^s . If \mathfrak{R}^s is a normal subgroup, then one gets uniqueness of the torsion free connection on $Int(\mathfrak{g})$ -extension of the holonomy bundle of ∇_0 if and only if the same result holds on the Lie group \mathfrak{R}^s .
- 2. Algebraic results. Because of the left invariant character of the previous results we shall deal with their infinitesimal versions. Thus, at the Lie algebra level we are concerned with finite-dimensional Lie algebras on a field K of characteristic zero.

Theorem 1. For any linear endomorphism φ of g which belongs to the Lie algebra $h_{\mathfrak{g}}$ the following assertions hold:

- (i) The restriction of φ to the subspace $[\mathfrak{r},\mathfrak{s}] \oplus \mathfrak{s}$ takes its values in the center of the Lie algebra \mathfrak{g} .
- (ii) The restriction of φ to the Lie algebra $\mathfrak{r}^{\mathfrak{s}}$ is an element of the Lie algebra $h_{\mathfrak{r}^{\mathfrak{s}}}$ and takes its values in the subspace $\mathfrak{r}^{[\mathfrak{r},\mathfrak{s}]}$ of elements in \mathfrak{r} which commute with the subspace $[\mathfrak{r},\mathfrak{s}]$.

Before starting the proof of Theorem I, let us remark that our interest in the Lie algebra $h_{\mathfrak{g}}$ arises from the following facts. Let \mathfrak{g} be a Lie algebra and let $h_{\mathfrak{g}}^0$ be the vector space of all linear maps of \mathfrak{g} into its center $Z(\mathfrak{g})$. Consider the linear map π of $h_{\mathfrak{g}}$ into $(\mathrm{ad}(\mathfrak{g}))^{(1)}$ given by $\pi(\varphi) = \mathrm{ad} \circ \varphi$, $\varphi \in h_{\mathfrak{g}}$, so that for any element X in \mathfrak{g} one gets $\pi(\varphi)(X) = \mathrm{ad}_{\varphi(X)}$. It is clear that the bilinear map $(X, Y) \to [\varphi(X), Y]$ of $\mathfrak{g} \times \mathfrak{g}$ in \mathfrak{g} is symmetric. Thus the previous map π takes its values in the first prolongation of $\mathrm{ad}(\mathfrak{g})$. This map is onto because of the definition of $(\mathrm{ad}(\mathfrak{g}))^{(1)}$. The kernel of π is $h_{\mathfrak{g}}^0$. So one obtains the following exact sequence of vector spaces:

$$0 \to h_{\mathfrak{g}}^0 \to h_{\mathfrak{g}} \to (\operatorname{ad}(\mathfrak{g}))^{(1)} \to 0.$$

Since the Cartan-Killing form $(X, Y) \mapsto \Phi(X, Y) = \text{Tr}(\text{ad}_X \circ \text{ad}_Y)$ of \mathfrak{g} is invariant by the inner derivations of \mathfrak{g} , for each φ in $h_{\mathfrak{g}}$ one gets

$$\Phi([\varphi(X), Y], Z) = -\Phi(Y, [\varphi(X), Z]) = -\Phi(Y, [\varphi(Z), X])
= \Phi([\varphi(Z), Y], X) = \Phi([\varphi(Y), Z], X) = -\Phi(Z, [\varphi(Y), X])
= -\Phi([\varphi(Y), X], Z) = -\Phi([\varphi(X), Y], Z).$$

Thus $\Phi([\varphi(X), Y], Z) = \Phi(\varphi(X), [Y, Z]) = 0$, and the image $\varphi(g)$ is perpendicular to [g, g] under Φ . As is well known this implies that $\varphi(g)$ lies in the radical r of g.

For an element φ in h_g let us denote by A and B the restriction of φ to r and to \mathfrak{S} , respectively. Let (r, s) and (r', s') be two elements in $\mathfrak{g} \approx r \times \mathfrak{S}$. With respect to above notation one gets

$$[(A(r) + B(s), 0), (r', s')] = [(A(r') + B(s'), 0), (r, s)].$$

This last identity gives rise to the system

(1)
$$[A(r), r'] = [A(r'), r],$$

(2)
$$[B(s), r'] = [A(r'), s],$$

(3)
$$[B(s), s'] = [B(s'), s].$$

To prove Theorem I, we need two technical lemmas.

LEMMA 1. Let $\mathfrak g$ be a Lie algebra such that its Levi subalgebras $\mathfrak g$ are 3-dimensional, and let $\mathfrak g=\mathfrak r\oplus\mathfrak g$ be a Levi decomposition of $\mathfrak g$. Suppose $\mathfrak r$ is an irreducible $\mathfrak g$ -module of dimension greater than one. Then for any element $\mathfrak q$ of $h_{\mathfrak g}$ the restriction B of $\mathfrak g$ to $\mathfrak q$ is zero.

PROOF. One can suppose the ground field is algebraically closed. (This is done without loss of generality.) Let m + 1 be the dimension of the radical of \mathfrak{g} . Since \mathfrak{g} is a 3-dimensional semisimple Lie algebra, we can choose a basis (X, Y, H) in \mathfrak{g} such that

(4)
$$[X, Y] = H, [H, X] = 2X, [H, Y] = -2Y.$$

Let v be a primitive element of the \tilde{s} -module r. Then the sequence $v_0 = v$, $v_1 = Yv, \dots, v_m = Y^mv$ is a basis of the vector space r which satisfies the system

(5)
$$H.v_i = (m-2i)v_i, \quad i = 0, 1, ..., m,$$

$$Y.v_i = v_{i+1}, \quad i = 0, 1, ..., m-1 \text{ and } Y.v_m = 0,$$

$$X.v_0 = 0 \quad \text{and} \quad X.v_i = (-mi + i(i-1))v_{i-1}, \quad i = 1, ..., m,$$

where, for any $s \in \mathfrak{s}$ and $r \in \mathfrak{r}$ we write s.r for [s, r]. Now from the relations (3) and the system (4) one obtains

$$Y.B(H) = H.B(Y), Y.B(X) = X.B(Y), H.B(X) = X.B(H).$$

If one writes these in terms of the basis (v_i) , one gets

(6)
$$\sum_{i=0}^{m} B_{i}(H)Y.v_{i} = \sum_{i=0}^{m} B_{i}(Y)H.v_{i},$$

$$\sum_{i=0}^{m} B_{i}(X)Y.v_{i} = \sum_{i=0}^{m} B_{i}(Y)X.v_{i},$$

$$\sum_{i=0}^{m} B_{i}(X)H.v_{i} = \sum_{i=0}^{m} B_{i}(H)X.v_{i},$$

the v_i -components in (6) for i = 0, 1, ..., m, we have the relations

$$B_0(Y) = 0,$$
 $B_1(Y) = 0,$ $B_{m-1}(X) = 0,$ $B_m(X) = 0,$

and for $1 \le i \le m - 1$,

$$B_{i-1}(H) = (m-2i)B_i(Y),$$

$$B_{i-1}(X) = (i+1)(-m+i)B_{i+1}(Y),$$

$$(m-2i)B_i(X) = (i+1)(-m+i)B_{i+1}(Y).$$

The last three equalities give

$$(i+2)(m-2i)(-m+i+1)B_{i+2}(Y)=(i+1)(-m+i)(m-2i-4)B_{i+2}(Y).$$

Therefore, we get either $B_{i+2}(Y) = 0$ or

$$(i+2)(m-2i)(m-i-1)=(i+1)(m-i)(m-2i-4).$$

The ultimate equality implies m(m + 2) = 0; that cannot hold because m is positive. If i is an integer such that 2 < i + 2 < m one gets $B_{i+2}(Y) = 0$. This proves that B(Y) = 0 and we conclude that B(X) = B(H) = 0. Now we show that we can drop the condition that r is an irreducible β -module.

LEMMA 2. Let \mathfrak{g} be a Lie algebra such that its Levi subalgebras \mathfrak{g} are 3-dimensional and let $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{g}$ be a Levi decomposition of \mathfrak{g} . For any element φ of $h_{\mathfrak{g}}$ the restriction B of φ to \mathfrak{g} takes its values in the center $Z(\mathfrak{g})$.

PROOF. As in Lemma 1, let us suppose that the ground field is algebraically closed. Because of the simplicity of \hat{s} , the radical r is a direct sum of irreducible \hat{s} -modules

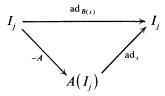
$$r = I_1 \oplus \cdots \oplus I_r.$$

We know that if φ is an element in $h_{\mathfrak{g}}$, the linear map B of \S into \mathfrak{r} which is deduced from φ satisfies the relation [B(s), s'] = [B(s'), s]. Take B_{I_j} to be the I_j -component of B. Then Lemma 1 tells us that, for any I_j which has dimension greater than one, we get $B_{I_j} = 0$, so that B takes its values in the subalgebra \mathfrak{r}^{\S} . The relation [B(s), r] = [A(r), s] implies that [B(s), r] lies in the \S -module $[\S, \mathfrak{r}]$. The subspace \mathfrak{r}^{\S} being a subalgebra of \mathfrak{g} , the term $[B(s), r_0]$ also lies in \mathfrak{r}^{\S} for any (s, r_0) in $\S \times \mathfrak{r}^{\S}$, so that we get $[B(s), r_0] = 0$. Therefore, we see that B takes its values in the center of \mathfrak{r}^{\S} . Thus if s and s' are elements of \S and if $r \in \mathfrak{r}$ we get

$$[s', [B(s), r]] = [[s', B(s)], r] + [B(s), [s', r]] = [B(s), [s', r]],$$

so that the inner derivation $\operatorname{ad}_{B(s)}$ of r is compatible with the action of $\hat{\mathfrak{s}}$. This means that $\operatorname{ad}_{B(s)}$ is a $\hat{\mathfrak{s}}$ -module morphism.

Suppose that I_j is an irreducible factor of the decomposition (7) with dim $I_j > 1$. The classical Schur lemma tells us that either $\operatorname{ad}_{B(s)}(I_j)$ is $\{0\}$ or $\operatorname{ad}_{B(s)|I_j}$ is an isomorphism. In the latter case the subspace $J_j = [B(s), I_j]$ is an irreducible $\hat{\mathfrak{s}}$ -module which is not zero. According to the formula (2), one gets the following commutative diagram:



If J_j is different from $\{0\}$ the above diagram implies that A is an isomorphism of I_j on $A(I_j)$ and idem for the restriction to $A(I_j)$ of ad_s . We conclude that $A(I_j)$ is exactly the submodule J_j . Moreover, J_j does not depend to the choice of s in s. As we deal only with restrictions, the map $s \to \mathrm{ad}_{B(s)} | I_j$ is a linear map of s in the space of s-morphisms of I_j into J_j , so that the Schur lemma implies that the above map has rank one. Finally, we deduce from the relation $-\mathrm{ad}_{B(s)|I_j} \circ A_{|I_j|}^{-1} = \mathrm{ad}_s |I_j|$ that the

kernel of $s \to \operatorname{ad}_{B(s)}|I_j$ is a nonzero ideal of $\mathfrak S$ different from $\mathfrak S$. The Lie algebra $\mathfrak S$ being simple, we get a contradiction.

PROOF OF THEOREM I. Let us keep in mind that the ground field is algebraically closed. Let C be a Cartan subalgebra of the Lie algebra $\hat{\mathfrak{S}}$. Fix a simple system of roots $\mathscr{Q} = (\alpha_1, \ldots, \alpha_k)$ associated to C. We write (X_i, Y_i, H_i) for the Weyl system $(X_{\alpha_i}, Y_{\alpha_i}, H_{\alpha_i})$ corresponding to the system \mathscr{Q} . As vector space, the Lie algebra $\hat{\mathfrak{S}}$ is generated by the system (X_i, Y_i, H_i) , $i = 1, 2, \ldots, k$. Let (n_{ij}) , $i, j = 1, 2, \ldots, k$, be the Cartan matrix which is associated to \mathscr{Q} . For any $i = 1, 2, \ldots, k$, let $\hat{\mathfrak{S}}_i$ be the Lie algebra $KX_i \oplus KY_i \oplus KH_i$ (see [2, Chapter IV, §3]). Now let φ be an element of $h_{\mathfrak{Q}}$. Lemma 2 guarantees that the vector subspace $\varphi(\hat{\mathfrak{S}}_i) = B(\hat{\mathfrak{S}}_i)$ is contained in the center of the subalgebra $r \oplus \hat{\mathfrak{S}}_i$ of \mathfrak{g} . If we consider the 2-cochain $X, Y \to -B[X, Y]$, then (3) is equivalent to the fact that the above 2-cochain is the coboundary of the 1-cochain $X \to B(X)$. Thus the 2-cochain $X, Y \to -B[X, Y]$ must be closed, so that

(8)
$$[X, B[Y, Z]] - [Y, B[X, Z]] + [Z, B[X, Y]] = 0$$

for any (X, Y, Z) in $\S \times \S \times \S$. Now take i, j in [1, 2, ..., k]. According to the Weyl relations we may deduce from (8) that $[X_i, B[H_i, Y_j]] - [Y_j, B[H_i, X_i]] = -n_{ij}[X_i, B(Y_j)] - 2[Y_j, B(X_i)] = -(n_{ij} + 2)[X_i, B(Y_j)] = 0$. On the other hand, the relation (3) gives

$$(n_{ij}+2)[X_i, B(Y_i)] = (n_{ji}+2)[X_i, B(Y_i)] = 0.$$

For these last equalities to hold, the necessary condition is

$$[X_i, B(Y_i)] = 0.$$

Now let us compute the quantity $[H_i, B(Y_i)]$, taking

$$[H_{i}, B(Y_{j})] = [[X_{i}, Y_{i}], B(Y_{j})] = [[X_{i}, B(Y_{j})], Y_{i}] + [X_{i}, [Y_{i}, B(Y_{j})]]$$

$$= [X_{i}, [Y_{i}, B(Y_{j})]] = [X_{i}, [Y_{j}, B(Y_{i})]]$$

$$= [[X_{i}, Y_{j}], B(Y_{i})] + [Y_{j}, [X_{i}, B(Y_{i})]].$$

If $i \neq j$, the Weyl relations together with Lemma 2 give

$$[[X_i, Y_i], B(X_i)] = 0$$
 and $[Y_i, [X_i, BY_i]] = 0$,

so that, for any i, j in $[1, 2, \ldots, k]$,

$$[H_i, B(Y_j)] = 0.$$

Finally, (9) and (10) tell us that for any j = 1, 2, ..., k the element $\varphi(Y_j) = B(Y_j)$ (when it is not zero) is a primitive element in the \mathfrak{S} -module r with the weight $0 \in C^*$. Therefore let us denote by \mathfrak{m}_j the irreducible \mathfrak{S} -module generated by $\varphi(Y_j)$. It is well known that \mathfrak{m}_j is generated as a vector space by the system $Y_1^{m_1}Y_2^{m_2}\cdots Y_k^{m_k}.B(Y_j)$ where one identifies Y_i with the operator $B(Y_i) \to [Y_i, B(Y_j)]$. On the other hand,

 $Y_1^{m_1} \cdots Y_k^{m_k} B(Y_j)$ has the weight $-\sum_{i=1}^k m_i \alpha_i$. In particular, let us compute the quantity $[H_i, [Y_i, BY_i]]$, taking

$$\begin{aligned}
&[H_{t}, [Y_{i}, B(Y_{j})]] = [[X_{t}, Y_{t}], [Y_{i}, B(Y_{j})]] \\
&= [X_{t}, [Y_{t}, [Y_{i}, B(Y_{j})]]] - [Y_{t}, [X_{t}, [Y_{i}, B(Y_{j})]]] \\
&= [X_{t}, [Y_{t}, [Y_{i}, B(Y_{j})]]] = [X_{t}, [[Y_{t}, Y_{i}], B(Y_{j})]] + [X_{t}, [Y_{i}, [Y_{t}, B(Y_{j})]]] \\
&= [X_{t}, [[Y_{t}, Y_{i}], B(Y_{j})]] = [X_{t}, [Y_{j}, B([Y_{t}, Y_{i}])]] = [Y_{j}, [X_{t}, B([Y_{t}, Y_{i}])]] \\
&= [Y_{j}, [[Y_{t}, Y_{i}], B(X_{t})]] = [Y_{j}, [[Y_{t}, B(X_{t})], Y_{i}]] + [Y_{j}, [Y_{t}, [Y_{i}, B(X_{t})]]] \\
&= [Y_{j}, [Y_{t}, [Y_{i}, B(X_{t})]]] = [Y_{i}, [Y_{t}, [X_{t}, B(Y_{i})]]] = 0.
\end{aligned}$$

This gives the identity

$$[H_t, [Y_i, BY_i]] = 0$$

for any i, j, t in [1, 2, ..., k]. From the formulas (9) and (10) one gets $[X_t, [Y_t, B(Y_j)]] = 0$ for any i, j, t in [1, 2, ..., k]. Thus (11) implies that $[Y_t, B(Y_j)]$ (if not zero) is a primitive element in r with weight $0 \in K^*$. This contradicts the fact that any $Y_tB(Y_j) = [Y_t, B(Y_j)]$ is associated to the weight $-\alpha_i$. We see that B takes its values in the center of the Lie algebra \mathfrak{g} , which proves part of (i). Let A_0 (resp. A_1) be the restriction to $r^{\mathfrak{s}}$ (resp. to $[r, \mathfrak{s}]$) of $\varphi \in h_{\mathfrak{g}}$. It is a consequence of the exact sequence $0 \to h_{\mathfrak{g}}^0 \to h_{\mathfrak{g}} \to \mathrm{ad}(\mathfrak{g})^{(1)} \to 0$ that the subspace $h_{\mathfrak{g}}(\mathfrak{g})$ generated by all the $\varphi(X)$, $\varphi \in h_{\mathfrak{g}}$, $X \in \mathfrak{g}$, is an ideal of the Lie algebra \mathfrak{g} . In fact, take (X, φ) in $\mathfrak{g} \times h_{\mathfrak{g}}$ and define $X\varphi$ to be the element of $\mathrm{End}(\mathfrak{g})$ defined by $Y \to (X\varphi)(Y) = [X, \varphi(Y)] - \varphi[X, Y]$. One easily verifies that the map $X\varphi$ belongs to $h_{\mathfrak{g}}$, so that for any X and X' in \mathfrak{g} and for any φ in $h_{\mathfrak{g}}$ the element $[X, \varphi(X')]$ lies in $h_{\mathfrak{g}}(\mathfrak{g})$. Now take r and r' in $r = r^{\mathfrak{s}} + [r, s]$. We may write

$$r = r_0 + r_1, \qquad r' = r_0' + r_1'$$

where r_0 and r_0' (resp. r_1 and r_1') belong to r^{\sharp} (resp. to $[r, \sharp]$), to get

$$[A_0r_0 + A_1r_1, r'_0 + r'_1] = [A_0r'_0 + A_1r'_1, r_0 + r_1].$$

This equation yields the three identities

$$[A_1r_1, r_1'] = [A_1r_1', r_1],$$

$$[A_0r_0, r_0'] = [A_0r_0', r_0],$$

$$[A_0r_0, r_1'] = [A_1r_1', r_0].$$

Given an element s in \hat{s} , (14) implies

$$[s, [A_1r_1, r'_1]] = [[s, A_1r_1], r'_1] + [A_1r_1, [s, r'_1]].$$

Relation (2) together with Lemma 2 implies that the ideal $h_{\mathfrak{g}}(\mathfrak{g})$ lies in the subalgebra $\mathfrak{r}^{\mathfrak{s}}$, so that we get

$$[s, [A_1r_1, r'_1]] = [A_1r_1, [s, r'_1]].$$

The first member $[s, [A_1r_1, r'_1]]$ lies in the subspace [r, \$], while the second member lies in the ideal $h_{\mathfrak{g}}(\mathfrak{g})$, so that $[A_1r_1, [s, r'_1]] = 0$, and we obtain the equality

$$[A_1r_1,[\mathfrak{r},\mathfrak{s}]]=\{0\}.$$

Bracketing $s \in \mathfrak{s}$ with both sides of (14) one gets

$$[s, [A_0r_0, r'_1]] = [A_0r_0, [s, r'_1]] = [s, [A_1r'_1, r_0]] = 0.$$

Our conclusion is

$$[A_0r_0, [s, r'_1]] = [A_1[s, r'_1], r_0] = 0.$$

That ends the proof of (i). Proving (i), we established (13) and $[A_0r_0, [r, \hat{s}]] = \{0\}$, so that (ii) holds and Theorem I is proved.

Applying Theorem I to a particular situation, we get the following

COROLLARY I.1. Let \mathfrak{g} be a Lie algebra. Keeping the previous notations, suppose that the subalgebra $\mathfrak{r}^{\mathfrak{s}}$ is commutative. Then the Lie algebra $h_{\mathfrak{g}}$ is zero if and only if the center of \mathfrak{g} is zero.

PROOF. First, suppose that $h_{\mathfrak{g}}$ is zero. Then because of the inclusion of $h_{\mathfrak{g}}^0 = Z(\mathfrak{g})$ $\otimes \mathfrak{g}^*$ in $h_{\mathfrak{g}}$ the center $Z(\mathfrak{g})$ of \mathfrak{g} is zero. Second, suppose the center $Z(\mathfrak{g})$ of \mathfrak{g} is zero. Let φ be an element of $h_{\mathfrak{g}}$. For any element r_0 in $r^{\mathfrak{g}}$ the assertion (ii) of Theorem I tells us that the element $\varphi(r_0)$ commutes with the subspace $[\mathfrak{g}, r]$. Since $r^{\mathfrak{g}}$ is supposed to be commutative, $\varphi(r_0)$ lies in the center of \mathfrak{g} , which implies that the map φ is identically zero.

EXAMPLE 2.1. Let \mathcal{G} be any semisimple connected Lie group with Lie algebra \mathfrak{g} . Theorem I tells us that the Lie algebra $h_{\mathfrak{g}}$ is zero, so that the exact sequence $0 \to h_{\mathfrak{g}}^0 \to h_{\mathfrak{g}} \to (\operatorname{ad}(\mathfrak{g}))^{(1)} \to 0$ gives $\operatorname{ad}(\mathfrak{g})^{(1)} = \{0\}$.

Keeping our previous notations, we have the following result.

THEOREM II. Let \mathfrak{g} be a Lie algebra and let us denote by $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ the largest ideal of \mathfrak{g} contained in $\mathfrak{r}^{\mathfrak{s}}$. For any decomposition $\mathfrak{g} = \mathfrak{r} \oplus [\mathfrak{r}, \mathfrak{s}] \oplus \mathfrak{s}$ we have $h_{\mathfrak{g}} = \operatorname{Hom}_{K}([\mathfrak{r}, \mathfrak{s}] \oplus \mathfrak{s}, Z(\mathfrak{g})) \oplus (h_{\mathfrak{r}^{\mathfrak{s}}} \cap \operatorname{Hom}_{K}(\mathfrak{r}^{\mathfrak{s}}, D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}}))$.

PROOF OF THEOREM II. Let us recall the construction of $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ as it is given in [1]. We define the sequence $D_{\mathfrak{g}}^{i}(\mathfrak{r}^{\mathfrak{s}})$ by setting $D_{\mathfrak{g}}^{0}(\mathfrak{r}^{\mathfrak{s}}) = \mathfrak{r}^{\mathfrak{s}}$ and $D_{\mathfrak{g}}^{i+1}(\mathfrak{r}^{\mathfrak{s}}) = D^{1}(D_{\mathfrak{g}}^{i}(\mathfrak{r}^{\mathfrak{s}})) = \{X \in D_{\mathfrak{g}}^{i}(\mathfrak{r}^{\mathfrak{s}})/[X,\mathfrak{g}] \subset D_{\mathfrak{g}}^{i}(\mathfrak{r}^{\mathfrak{s}})\}, i \geq 0$. The ideal $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ is the limit of the sequence $D_{\mathfrak{g}}^{i}(\mathfrak{r}^{\mathfrak{s}})$.

First let us observe that $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\$})$ is equal to $\mathfrak{r}^{\$} \cap \mathfrak{r}^{[\mathfrak{r},\$]}$. Indeed, if (r_0, r_1, s) is an element of $\mathfrak{r}^{\$} \times \mathfrak{r} \times \$$, we have $[s, [r_0, r_1]] = [r_0, [s, r_1]]$. The first member $[s, [r_0, r_1]]$ lies in the subspace $[\mathfrak{r}, \$]$, so that we have the inclusion $[\mathfrak{r}^{\$}, [\mathfrak{r}, \$]] \subset [\mathfrak{r}, \$]$. Now, if X is an element of $\mathfrak{r}^{\$} \cap \mathfrak{r}^{[\mathfrak{r},\$]}$ and $(r_0, r_1) \in \mathfrak{r}^{\$} \times [\mathfrak{r}, \$]$, we get

$$[[X, r_0], r_1] = [[X, r_1], r_0] + [X, [r_0, r_1]] = 0.$$

We conclude that $\operatorname{ad}_X(\mathfrak{g})$ is included in $r^{\sharp} \cap r^{[r,\sharp]}$, so that $r^{\sharp} \cap r^{[r,\sharp]}$ is included in $D_{\mathfrak{g}}^{\infty}(r^{\sharp})$. Conversely, let (x, y, s) be an element of $D_{\mathfrak{g}}^{\infty}(r^{\sharp}) \times r \times \mathfrak{F}$, so we have [[x, y], s] - [x, [y, s]] = 0. The term [[x, y], s] belongs to $[r, \mathfrak{F}]$ while [x, [y, s]]

belongs to $[r, \hat{s}]$, so that $ad_x([r, \hat{s}]) = \{0\}$. Once we get $D_{\mathfrak{g}}^{\infty}(r^{\mathfrak{s}}) = r^{\mathfrak{s}} \cap r^{[r, \mathfrak{s}]}$, Theorem I implies the inclusion

$$h_{\mathfrak{g}} \subset \operatorname{Hom}_{K}([\mathfrak{r},\mathfrak{s}] \oplus \mathfrak{s}, Z(\mathfrak{g})) \oplus h_{\mathfrak{r}^{\mathfrak{s}}} \cap \operatorname{Hom}_{K}(\mathfrak{r}^{\mathfrak{s}}, D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})).$$

Conversely, any element (φ_0, φ_1) of $\operatorname{Hom}_K([\mathfrak{r}, \mathfrak{S}] \oplus \mathfrak{S}, Z(\mathfrak{g})) \oplus h_{\mathfrak{r}^{\mathfrak{S}}} \cap \operatorname{Hom}_K(\mathfrak{r}^{\mathfrak{S}}, D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{S}}))$ defines a unique element $\hat{\varphi}$ of $h_{\mathfrak{g}}$ by setting $\hat{\varphi}(r_0 + r_1 + s) = \varphi_0(r_1 + s) + \varphi_1(r_0)$. Indeed, according to the previous results we have

$$[\varphi_0(r_1+s)+\varphi_1(r_0),r'_0+r'_1+s']=[\varphi_1(r_0),r'_0]$$

and

$$[\varphi_0(r_1'+s')+\varphi_1(r_0'),r_0+r_1+s]=[\varphi_1(r_0'),r_0]$$

where (r_0, r_1, s) and (r'_0, r'_1, s') are elements of $r^{\sharp} \times [r, \sharp] \times \sharp \simeq \mathfrak{g}$. Since φ_1 is an element of $h_{r^{\sharp}}$ we have

$$\left[\hat{\mathbf{\phi}}(X), Y\right] = \left[\hat{\mathbf{\phi}}(Y), X\right]$$

for any pair (X, Y) in $\mathfrak{g} \times \mathfrak{g}$. That proves the inclusion

$$\operatorname{Hom}_{K}([\mathfrak{r},\mathfrak{s}] \oplus \mathfrak{s}, Z(\mathfrak{g})) \oplus h_{\mathfrak{r}^{\mathfrak{s}}} \cap \operatorname{Hom}_{K}(\mathfrak{r}^{\mathfrak{s}}, D_{\mathfrak{q}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})) \subset h_{\mathfrak{q}}$$

which ends the proof of Theorem II.

COROLLARY II.1. For a Lie algebra $\mathfrak{g} \simeq \mathfrak{r}^{\mathfrak{s}} \oplus [\mathfrak{r}, \mathfrak{s}] \oplus \mathfrak{s}$, the space $h_{\mathfrak{g}}$ is zero if and only if the ideal $D_{\mathfrak{q}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ is zero.

PROOF. The sufficient condition is trivial. Conversely, let us suppose that $h_{\mathfrak{g}}$ is zero. As we did before, we may suppose that the ground field K is algebraically closed. If $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ were different from zero, by applying a classical Lie theorem to the solvable Lie algebra \mathfrak{r} , one could find a nonzero element v_0 in $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ and a linear form $\lambda \in \mathfrak{r}^*$ such that for any $X \in \mathfrak{r}$ one gets

$$[X, v_0] = \lambda(X)v_0.$$

Since h_g is zero, so is Z(g), so that the linear form λ is different from zero. Let us define the linear map φ of g into itself by putting

$$\varphi(r+s)=\lambda(r)v_0$$

for all $(r, s) \in r \times \hat{s}$. Thus, given (r, s) and (r', s') in $r \times \hat{s}$ we have

$$[\varphi(r+s), r'+s'] = [\lambda(r)v_0, r'+s'] = \lambda(r)[v_0, r'] = -\lambda(r)\lambda(r')v_0$$

and

$$[\varphi(r'+s'), r+s] = [\lambda(r')v_0, r+s] = \lambda(r')[v_0, r] = -\lambda(r')\lambda(r)v_0.$$

We must conclude that the linear map φ is a nonzero element of $h_{\mathfrak{g}}$, which is contrary to our assumption. Corollary II.1 is proved.

COROLLARY II.2. Let $\mathfrak g$ be a Lie algebra with nilpotent radical $\mathfrak r$. Then if the center $Z(\mathfrak g)$ is zero so is the Lie algebra $h_{\mathfrak g}$.

PROOF. By Corollary II.1, if $h_{\mathfrak{g}}$ were not zero, the same would hold for the ideal $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$. Applying the theorem of Engel, one would have a nonzero element X_0 in $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}}) \cap Z(\mathfrak{r})$. Such an element X_0 would lie in the center $Z(\mathfrak{g})$.

Keeping in mind our geometrical interest in the prolongation $ad(g)^{(1)}$, the previous results lead to this result.

THEOREM III. Let \mathfrak{g} be a Lie algebra with a decomposition $\mathfrak{g} \simeq \mathfrak{r}^{\mathfrak{s}} \oplus [\mathfrak{r}, \mathfrak{s}] \oplus \mathfrak{s}$. The first prolongation $(\operatorname{ad}(\mathfrak{g}))^{(1)}$ of the linear space $\operatorname{ad}(\mathfrak{g})$ is isomorphic to the factor space $h_{\mathfrak{r}^{\mathfrak{s}}} \cap \operatorname{Hom}_{K}(\mathfrak{r}^{\mathfrak{s}}, D_{\mathfrak{q}}^{\infty}(\mathfrak{r}^{\mathfrak{s}}))/h_{\mathfrak{r}^{\mathfrak{s}}} \cap \operatorname{Hom}_{K}(\mathfrak{r}^{\mathfrak{s}}, Z(\mathfrak{g}))$.

The proof is an immediate consequence of Theorem II together with the exact sequence $0 \to \operatorname{Hom}(\mathfrak{g}, Z(\mathfrak{g})) \to h_{\mathfrak{g}} \to (\operatorname{ad}(\mathfrak{g}))^{(1)} \to 0$.

COROLLARY III.1. Let \mathfrak{g} be a Lie algebra with a Levi decomposition $\mathfrak{r} \oplus \mathfrak{s}$. If \mathfrak{r}^* is commutative then $(\operatorname{ad}(\mathfrak{g}))^{(1)}$ is zero.

PROOF. We already proved that the ideal $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\sharp})$ is equal to $\mathfrak{r}^{\sharp} \cap \mathfrak{r}^{[\mathfrak{r}, \sharp]}$. Since \mathfrak{r}^{\sharp} is commutative we get $h_{\mathfrak{r}^{\sharp}} = \operatorname{Hom}(\mathfrak{r}^{\sharp}, \mathfrak{r}^{\sharp})$ and $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\sharp}) = \mathfrak{g}^{\mathfrak{r}^{\sharp}} = \mathfrak{g}^{\mathfrak{g}} = Z(\mathfrak{g})$. Therefore, we have $h_{\mathfrak{r}^{\sharp}} \cap \operatorname{Hom}(\mathfrak{r}^{\sharp}, Z(\mathfrak{g})) = \operatorname{Hom}(\mathfrak{r}^{\sharp}, Z(\mathfrak{g}))$.

COROLLARY III.2. Let \mathfrak{g} be a Lie algebra such that some $\mathfrak{r}^{\mathfrak{s}}$ is an ideal in \mathfrak{g} . Then $(\operatorname{ad}(\mathfrak{g}))^{(1)}$ is isomorphic to $(\operatorname{ad}(\mathfrak{r}^{\mathfrak{s}}))^{(1)}$.

PROOF. Since r^s is an ideal of g we have $r^s = D_g^{\infty}(r^s) = r^s \cap r^{[r,s]}$. On the other hand, we can write $[r^s]^{r^s} = Z(r^s)$ so that

$$Z(\mathfrak{r}^{\mathfrak{s}}) \subset [\mathfrak{r}^{\mathfrak{s}} \oplus [\mathfrak{r},\mathfrak{s}] \oplus \mathfrak{s}]^{\mathfrak{r}^{\mathfrak{s}}} = Z(\mathfrak{g}).$$

That proves the equality $Z(\mathfrak{r}^{\mathfrak{s}}) = Z(\mathfrak{g})$. We apply Theorem III and we obtain $(\operatorname{ad}(\mathfrak{g}))^{(1)} \simeq h_{\mathfrak{r}^{\mathfrak{s}}}/\operatorname{Hom}(\mathfrak{r}^{\mathfrak{s}}, Z(\mathfrak{r}^{\mathfrak{s}})) \simeq (\operatorname{ad}(\mathfrak{r}^{\mathfrak{s}}))^{(1)}$.

PROPOSITION 2.1. Let \mathfrak{g} be a Lie algebra. Then for any Levi subalgebra \mathfrak{F} , the subspace $h_{\mathfrak{r}^{\mathfrak{F}}} \cap \operatorname{Hom}(\mathfrak{r}^{\mathfrak{F}}, D^{\infty}_{\mathfrak{g}}(\mathfrak{r}^{\mathfrak{F}}))$ is an ideal of $h_{\mathfrak{r}^{\mathfrak{F}}}$. Furthermore, the subspace $h_{\mathfrak{r}^{\mathfrak{F}}}(\mathfrak{r}^{\mathfrak{F}}) \cap D^{\infty}_{\mathfrak{g}}(\mathfrak{r}^{\mathfrak{F}})$ is an ideal of \mathfrak{g} which does not depend on the choice of \mathfrak{F} .

PROOF. Let $\varphi \in h_{\mathfrak{r}^s}$ and let $\psi \in h_{\mathfrak{r}^s} \cap \operatorname{Hom}(\mathfrak{r}^s)$ so that $[\varphi, \psi]$ lies in $h_{\mathfrak{r}^s}$. It remains to prove that for all (r_0, r, s) in $\mathfrak{r}^s \times \mathfrak{r} \times \mathfrak{s}$ we have $[[\varphi, \psi](r_0), [r, s]] = 0$. Here

$$[[\varphi, \psi](r_0), [r, s]] = [\varphi\psi(r_0) - \psi\varphi(r_0), [r, s]]$$

= $[\varphi\psi(r_0), [r, s]] = [[\varphi\psi(r_0), r], s].$

If i is an ideal of a Lie algebra g and $\varphi \in h_{\mathfrak{g}}$, for all $v \in \mathfrak{g}$, we get $[\varphi(\mathfrak{i}), v] = [\varphi(v), \mathfrak{i}] \subset \mathfrak{i}$ so that in the previous case $[\varphi\psi(r_0), r]$ lies in $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}})$ and the first statement holds. Now let \mathfrak{s}_1 and \mathfrak{s}_2 be two Levi subalgebras of g. A theorem of Malcev and Harish-Chandra tells us that there is an element X_0 of the nilpotent radical of g such that $\mathfrak{s}_2 = e^{\operatorname{ad}(X_0)}(\mathfrak{s}_1)$. Since $e^{\operatorname{ad}(X_0)}$ preserve every ideal of g we have $e^{\operatorname{ad}(X_0)}(D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_1})) = D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_1})$. Since $\mathfrak{r}^{\mathfrak{s}_1}$ and $\mathfrak{r}^{\mathfrak{s}_2}$ must be conjugated by $e^{\operatorname{ad}(X_0)}$, so must the ideals $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_1})$ and $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_2})$, and one concludes that $D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_1}) = D_{\mathfrak{g}}^{\infty}(\mathfrak{r}^{\mathfrak{s}_2})$.

Let us illustrate the main results by a few examples.

EXAMPLE 1. Let g be a semisimple Lie algebra. The radical r of g being zero, Theorem I gives $h_g = \{0\}$, so that we get $(ad(g))^{(1)} = \{0\}$.

EXAMPLE 2. If g is a reductive Lie algebra then we get $Z(g) = r^s = r$. By the Corollary III.1, we have $(ad(g))^{(1)} = \{0\}$.

EXAMPLE 3. Let g be the affine Lie algebra $\mathbf{R}^2 \times sl(2, \mathbf{R})$ and let (u, X) be an element of g. Then we get $ad(u, X) = \begin{bmatrix} X & -\delta u \\ 0 & ad & X \end{bmatrix}$ where $\delta u(Y) = Yu$ for $Y \in sl(2, \mathbf{R})$. Since $sl(2, \mathbf{R})$ is irreducible on \mathbf{R}^2 , we have $\mathbf{r}^{sl(2, \mathbf{R})} = \{0\}$, and Theorem III gives $(ad(g))^{(1)} = \{0\}$.

Example 4. Let g be the Lie algebra $\mathbb{R}^5 \# sl(2, \mathbb{R})$, with the bracket given by

$$[((a, b, c, \alpha, \beta), X), ((a', b', c', \alpha', \beta'), X')]$$

$$= (bc' - b'c + \alpha\beta' - \alpha'\beta, 0, 0, X(\alpha', \beta') - X'(\alpha, \beta), [X, X']).$$

Let us take \$ to be the subalgebra $\{0,0,0,0,0\} \# sl(2,\mathbf{R})$. It is clear that

$$\mathbf{r}^{s} = \mathbf{R}^{3} \times \{(0,0)\} \# \{0\},$$
 $[\mathbf{r}, \hat{s}] = \{(0,0,0)\} \times \mathbf{R}^{2} \# \{0\},$
 $Z(\mathfrak{g}) = Z(\mathbf{r}^{s}) = \mathbf{R} \times \{0,0,0,0\} \# \{0\}.$

Since r^s is an ideal in g, by Corollary III.2, $(ad(g))^{(1)}$ is isomorphic to the first prolongation of the inner derivations of the Heisenberg algebra r^s , which is the set of those $S \in \text{Hom}(r^s \times r^s, r^s)$ defined by

$$S((a,b,c),(a',b',c')) = ((\lambda b + \mu c)b' + (\mu b + \nu c)(c',0,0)$$

where $(\lambda, \mu, \nu) \in \mathbf{R}^3$.

3. Return to differential geometry. We begin by explaining the geometric interest of the ideal $\mathcal{G} = h_{r^s}(r^s) \cap D_{\mathfrak{g}}^{\infty}(r^s)$. One easily verifies that \mathcal{G} is the minimal ideal of ad(\mathfrak{g}) such that the first prolongation of ad(\mathfrak{g}) coincides with that of \mathcal{G} , so that

$$(ad(a))^{(1)} = \mathcal{G}^{(1)}$$
.

This gives another understanding of Proposition 2.1. Moreover, the geometrical statement (\mathfrak{R}_1) is a direct consequence of the above remark. The geometrical statements (\mathfrak{R}_2) , (\mathfrak{R}_3) and (\mathfrak{R}_4) are consequences of Corollaries I.1, II.2 and III.2, respectively.

Take a left invariant torsion free connection ∇ on a Lie group \mathcal{G} and assume that its holonomy group is a subgroup of $Int(\mathfrak{g})$. One observes that the space $ad(\mathfrak{g})^{(1)}$ provides a parametrization of the set of all left invariant torsion free connections which are adapted to the $Int(\mathfrak{g})$ -structure obtained from the holonomy bundle of ∇ (see §1).

Our last remark applies to the case of solvable Lie groups which cannot be handled by the techniques used in this work. We may observe that for such a Lie group \mathcal{G} with Lie algebra \mathcal{G} the linear Lie algebra $h_{\mathfrak{g}}$ is always different from zero. Let \mathcal{G} be a solvable Lie algebra. If $Z(\mathfrak{g}) \neq 0$, $\operatorname{Hom}_K(\mathfrak{g}, Z(\mathfrak{g}))$ is included in $h_{\mathfrak{g}}$. If $Z(\mathfrak{g}) = 0$ then any ξ in $Z([\mathfrak{g},\mathfrak{g}]) - \{0\}$ gives us a nonzero element ad_{ξ} in $h_{\mathfrak{g}}$. Thus, for any solvable Lie algebra with $Z(\mathfrak{g}) = 0$ the first prolongation $\operatorname{ad}(\mathfrak{g})^{(1)}$ is never zero.

ADDENDUM. The authors are indebted to the referee for many useful suggestions which led to better formulation of some theorems.

BIBLIOGRAPHY

- 1. V. Guillemin, A Jordan Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geom. 2 (1968).
 - 2. N. Jacobson, Lie algebras, Tracts in Math., no. 10, Interscience, New York, 1962.
 - 3. J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329.
- 4. I. Singer and S. Sternberg, *The infinite groups of Lie and Cartan*, J. Analyse Math. 15 (1965), 1-114.

Université des Sciences et Techniques du Languedoc, Place Eugène Baraillon, 34060-Montpellier Cedex, France